초록 close

본 논문에서는 DCT 도메인에서 영상의 블록에 대한 분류에 따라 다른 블록들에 삽입될 워터마크의 강도를 적응적으로 조절하여 워터마크를 삽입하기 위해 인간 시각 시스템(HVS)과 신경회로망 중 SOM(Self-Organizing Map)을 이용한 적응적 디지털 이미지 워터마킹을 제안한다. 인간 시각 시스템을 기반으로 하여 블록의 특징벡터를 찾아낸다. 블록의 특징벡터를 입력으로 SOM에 의해 블록들은 4등급으로 분류된다. 이들 중 3개의 등급에 속하는 블록을 선택하여 DCT 계수들 중 DC성분을 제외한 저주파 성분을 가지는 6개의 계수들을 선택하여 워터마크를 삽입한다. 실험을 통해 새로 제안된 알고리즘은 좋은 화질을 얻을 수 얻을 수 있었고 JPEG 압축, 영상처리, 기하학적 변환과 잡음과 같은 공격에 아주 강인하였다.


We propose an adaptive digital watermarking algorithm using HVS(human visual system) and SOM(Self-Organizing Map) among neural networks. This method adjusts adaptively the strength of the watermark which is embedded in different blocks according to block classification in DCT(Discrete Cosine Transform) domain. All blocks in 3 classes out of 4 are selected to embed a watermark. Watermark sequences are embedded in 6 lowest frequency coefficients of each block except the DC component. The experimental results are excellent.