초록 close

최근에 병렬처리를 위한 새로운 위상으로 하이퍼-스타 그래프 HS(m,k)가 제안되었다. 하이퍼-스타 그래프는 하이퍼큐브와 스타 그래프의 성질을 가지고 있으면서, 같은 노드수를 갖는 하이퍼큐브보다 망비용이 우수한 그래프이다. 본 논문에서는 하이퍼-스타 그래프 HS(m,k)가 하이퍼큐브의 서브그래프임을 증명한다. 그리고 정규형 그래프인 하이퍼-스타 HS(2n,n)가 제안된 매핑 기법에 의해 노드 대칭임을 보이며, 최소 높이를 갖는 스패닝 트리를 이용한 일-대-다 방송 기법을 제안하고, 방송 수행 시간이 2n-1임을 보인다.


Recently A Hyper-Star Graph HS(m,k) has been introduced as a new interconnection network of new topology for parallel processing. Hyper-Star Graph has properties of hypercube and star graph, further improve the network cost of a hypercube with the same number of nodes. In this paper, we show that Hyper-Star Graph HS(m,k) is subgraph of hypercube. And we also show that regular graph, Hyper-Star Graph HS(2n,n) is node-symmetric by introduced mapping algorithm. In addition, we introduce an efficient one-to-all broadcasting scheme - takes 2n-1 times-in Hyper-Star Graph HS(2n,n) based on a spanning tree with minimum height.