초록 close

웹으로부터 사용자가 원하는 정보에 잘 부응하는 정보를 추출하는 것은 검색엔진이 갖추어야 할 기본적 요소라 할 수 있다. 그러나, 질의어와의 패턴 매칭 방식에 의존하는 기존의 대부분의 검색엔진은 질의어가 갖는 애매성으로 인하여 사용자의 요구에 부합하는 검색결과를 제공하기가 쉽지 않다는 단점을 지니고 있다. 이를 극복하기 위하여 본 논문에서는 다음과 같은 5가지 과정, 즉, (i) 질의어 형성, (ii) 질의어 확장, (iii) 검색, (iv) 순위 재생성 및 (v) 지식베이스로 구성되는 지식기반 의미 메타 검색엔진의 기본 구조를 제안한다. 영어로 구현된 웹 문서에 대한 모의실험을 통하여 본 논문에서 제안된 지식기반 의미 메타 검색엔진이 기존의 검색엔진(구글)을 사용하여 얻은 결과보다 좋은 결과를 보임을 확인할 수 있었다.


Retrieving relevant information well corresponding to the user's request from web is a crucial task of search engines. However, most of conventional search engines based on pattern matching schemes to queries have a limitation that is not easy to provide results corresponding to the user's request due to the uncertainty of queries. To overcome the limitation, in this paper, we propose a framework for knowledge-based semantic meta-search engines with the following five processes: (i) Query formation, (ii) Query expansion, (iii) Searching, (iv) Ranking recreation, and (v) Knowledge base. From simulation results on english-based web documents, we can see that the proposed knowledge-based semantic meta-search engine provides more correct and better searching results than those obtained by using the Google.