초록 close

본 논문에서는 하이퍼큐브 시스템에서 결합 연산을 효율적으로 처리할 수 있는 향상된 병렬 결합 알고리즘을 제안한다. 새로운 알고리즘은 릴레이션 R을 처리함에 있어 하이퍼큐브 구조에 적합한 방송 알고리즘을 사용함으로써 하이퍼큐브 구조에 최적인 병렬 결합 알고리즘을 보이게 된다. 또한 병렬화 성능의 최대 주안점인 부하균등 문제와 데이타 불균형으로 인한 과부하 문제를 완전히 해결하고 결집 효과의 특성을 수용함으로써 전체 성능이 향상된다. 새로운 알고리즘은 해쉬를 기반으로 하는 알고리즘에서 구현하기 어려운 non-equijoin 연산을 쉽게 구현할 수 있다는 장점을 가지며, 비용 모형을 통해 분석한 결과 기존의 병렬 결합 알고리즘들에 비해 보다 나은 성능을 나타냄을 확인한다.


In this paper, we propose advanced parallel join algorithm to efficiently process join operation on hypercube systems. This algorithm uses a broadcasting method in processing relation R which is compatible with hypercube structure. Hence, we can present optimized parallel join algorithm for that hypercube structure. The proposed algorithm has a complete solution of two essential problems - load balancing problem and data skew problem - in parallelization of join operation. In order to solve these problems, we made good use of the characteristics of clustering effect in the algorithm. As a result of this, performance is improved on the whole system than existing algorithms. Moreover, new algorithm has an advantage that can implement non-equijoin operation easily which is difficult to be implemented in hash based algorithm. Finally, according to the cost model analysis, this algorithm showed better performance than existing parallel join algorithms.