초록 close

온라인 분석처리(On-Line Analytical Processing: OLAP)에서 집계 연산은 중요한 기본 연산이다. 본 논문에서는 OLAP에서의 집계 질의 중 영역-그룹화(range-groupby)라는 새로운 클래스의 질의를 정의하고, 이 질의의 처리 방법을 제시한다. 영역-그룹화 질의는 n-차원 데이타 큐브의 임의의 영역에 속한 셀들에 대하여 주어진 그룹화 속성들의 조합에 따라 집계 값을 구하는 질의이다. 이 질의는 관심의 대상이 되는 임의의 영역 내에서의 경향을 다각적인 측면에서 분석하기 위해서 OLAP에서 자주 사용되는 질의이다. 일반적으로, OLAP에서는 질의를 빠르게 처리하기 위하여 전방-합 배열(prefix-sum array)이라 불리는 집계 결과를 미리 계산하여 유지하는 선계산 기법이 실제적으로 널리 사용되고 있다. 그런데, 영역-그룹화 질의의 경우에는, 그룹화 속성들의 모든 조합에 대하여 집계 결과를 저장해야 하기 때문에, 저장 공간 오버헤드가 너무 크다. 본 논문에서는 가능한 적은 공간 오버헤드를 가지고 영역-그룹화 질의를 빠르게 처리할 수 있는 방법을 제안한다. 제안한 방법은 단지 하나의 전방-합 배열만을 유지하면서도, 가능한 모든 그룹화 속성의 조합에 대하여 영역-그룹화 질의를 효율적으로 처리한다. 이 방법은 가능한 모든 그룹화 속성들의조합에 대하여, 전방-합 배열을 선계산하여 유지하는 방법과 비교할 때, 액세스되는 셀의 개수는 비슷하면서 공간 오버헤드는 O ( 1 over 2^n )


Aggregation is an important operation that affects the performance of OLAP systems. In this paper, we define a new class of aggregation queries, called range-groupby queries, and present a method for processing them. A range-groupby query is defined as a query that, for an arbitrarily specified region of an n-dimensional cube, computes aggregations for each combination of values of the grouping attributes. Range-groupby queries are used very frequently in analyzing information in MOLAP since they allow us to summarize various trends in an arbitrarily specified subregion of the domain space. In MOLAP applications, in order to improve the performance of query processing, a method of maintaining precomputed aggregation results, called the prefix-sum array, is widely used. For the case of range-groupby queries, however, maintaining precomputed aggregation results for each combination of the grouping attributes incurs enormous storage overhead. Here, we propose a fast algorithm that can compute range-groupby queries with minimal storage overhead. Our algorithm maintains only one prefix-sum array and still effectively processes range-groupby queries for all possible combinations of the grouping attributes. Compared with the method that maintains aprefix-sum array for each combination of the grouping attributes in an n-dimensional cube, our algorithm reduces the space overhead by O ( 1 over 2^n )