초록 close

현존하는 대부분의 내용 기반 이미지 검색 시스템은 칼라, 모양, 텍스처 특징을 이용한 유사도-기반 검색에 초점을 맞추고 있다. 신경과학 이미지 데이타베이스의 경우, 이미지에 대한 전역적 평균 특징값을 기반으로 한 유사 이미지의 검색이 임상 병리학자들에게는 전혀 도움이 되지 않는다는 것을 발견하였다. 신경과학 데이타베이스상의 이미지에 대한 실용적인 내용 기반 검색을 실현하기 위해서는 이미지의 내부 내용이나 의미를 표현하는 일이 필요하다. 본 논문에서는 이러한 이미지들에 대해 보다 유용한 검색을 지원하기 위하여 이미지 내용과 그에 관련된 개념 지식을 표현하는 방법을 제시한다. 또한 객체지향 메시지 경로식을 이용하여 이러한 고급 검색을 지원하기 위한 연산의 의미를 기술한다. 제안된 기법은 유연하고 확장가능하므로 보다 강화된 내용 검색을 위해 이미지 내용에 대한 보다 많은 의미를 점진적으로 추가해 나갈 수 있다.


Most of the content-based image retrieval systems focuses on similarity-based retrieval of natural picture images by utilizing color, shape, and texture features. For the neuroscience image databases, we found that retrieving similar images based on global average features is meaningless to pathological researchers. To realize the practical content-based retrieval on images in neuroscience databases, it is essential to represent internal contents or semantics of images in detail. In this paper, we present how to represent image contents and their related concepts to support more useful retrieval on such images. We also describe the operational semantics to support these advanced retrievals by using object-oriented message path expressions. Our schemes are flexible and extensible, enabling users to incrementally add more semantics on image contents for more enhanced content searching.