초록 close

연관규칙 탐사기법은 트랜잭션들을 대상으로 항목간 또는 속성간의 연관관계를 발견하는 방법으로, 데이타 집합의 구조를 쉽게 통찰할 수 있다는 장점으로 인하여 활발히 연구되어 왔다. 그러나 현재까지의 연구들은 전체 사용자 중 공통적인 특성을 지닌 사용자 그룹이 존재할 경우, 그러한 그룹별 연관규칙을 찾아낼 수 없다는 한계점을 지닌다. 본 논문에서는 이러한 점을 해결하기 위하여, 속성선택 및 사용자 구분 기법을 이용하여 사용자를 부분집합으로 구분하고 그 부분집합별로 연관규칙을 발견한다. 또한 위와 같이 얻어진 지역적 연관규칙이 전체 사용자를 대상으로 한 전역적 연관규칙보다 해당 부분집합에 더욱 적합하다는 사실을 여러 연관규칙 평가치를 이용하여 평가한다.


Association rule discovery is a method that detects associative relationships between items or attributes in transactions. It is one of the most widely studied problems in data mining because it offers useful insight into the types of dependencies that exist in a data set. However, most studies on association rule discovery have the drawback that they can not discover association rules among user groups that have common characteristics. To solve this problem, we segment the set of users into user-subgroups by using feature selection and the user segmentation, thus local association rules in each user-subgroup can be discovered. To evaluate that the local association rules are more appropriated than the global association rules in each user-subgroup, derived local association rules are compared with global association rules in terms of several evaluation measures.