초록 close

최근 화상 회의, 화상 전화, 모바일 환경에서의 화상 통신, 얼굴 인식을 이용한 보안 시스템 등의 상업화에 힘입어 비디오에서의 얼굴 검출 및 추적 기술은 눈부신 발전을 이룩하였다. 또한, 얼굴 요소 검출은 요소 그 자체뿐 아니라 정확한 얼굴 영역 검출을 위한 필수 단계로서 중요한 연구 주제가 되고 있다. 그러나 영상에 나타난 복잡한 배경과 카메라 조작 및 조명에 의한 색상 왜곡 그리고 다양한 조명 조건 등은 얼굴 검출 및 추적, 요소 검출에 있어 여전히 큰 장애가 되고 있다.이에 따라, 본 논문에서는 실시간 화상 통신을 위한 새로운 얼굴 영역 검출 및 추적 알고리즘과 검출된 얼굴 영역에서 효과적으로 눈 영역을 검출할 수 있는 알고리즘을 제안한다. 제안하는 얼굴 검출 알고리즘은 복잡한 배경과 다양한 조명 조건에 관계없이 얼굴을 검출하고 추적하기 위해 웨이블릿 변환된 세 종류의 부 영역을 이용하여 얼굴 형판을 생성하고 웨이블릿 변환된 입력 영상과의 유사도를 측정하여 얼굴을 검출한다. 특히 다양한 조명 조건을 극복하기 위해 최소-최대 정규화와 히스토그램 평활화를 혼합 적용하여 매우 밝거나, 매우 어두운 영상에서의 얼굴 오 검출 및 놓침을 줄일 수 있었으며 세 가지 크기의 얼굴 형판을 이용함으로써 입력 영상에 존재하는 다양한 크기의 얼굴도 검출할 수 있었다. 또한 효과적인 얼굴 추적 알고리즘을 통해 다음 프레임에서의 얼굴 위치를 예측하고 예측된 얼굴 위치를 중심으로 탐색 영역을 정해 형판 정합을 수행함으로써 얼굴 검출률을 높이면서 수행 시간도 단축시킬 수 있었다. 수직, 수평 방향 투영을 이용한 합리적인 눈 검출 알고리즘은 어두운 조명이나 부정확한 얼굴 영역에서도 만족스러운 결과를 보여주었다.


In this paper, we propose the new face detection and tracking method based on template matching for real-time applications such as, teleconference, telecommunication, front stage of surveillance system using face recognition, and video-phone applications. Since the main purpose of paper is to track a face regardless of various environments, we use template-based face tracking method. To generate robust face templates, we apply wavelet transform to the average face image and extract three types of wavelet template from transformed low-resolution average face. However template matching is generally sensitive to the change of illumination conditions, we apply Min-max normalization with histogram equalization according to the variation of intensity. Tracking method is also applied to reduce the computation time and predict precise face candidate region. Finally, facial components are also detected and from the relative distance of two eyes, we estimate the size of facial ellipse.