초록 close

- For most of pattern recognition applications, it is required to correctly recognize patterns even if they have translation variations. In this paper, to achieve the goal of translation invariant pattern recognition, we propose a new generalized translation invariant second-order neural network using a constraint on the weights. The weight constraint is implemented using generalized translation invariant features which are accumulated sums of pixel combinations. Simulation results will be given to demonstrate that the proposed second-order neural network has the generalized translation invariant property.