초록 close

- In a power plant, disturbance detection and diagnosis are massive and complex problems. Once a disturbance occurs, it can be either persistent, self cleared, cleared by the automatic controllers or propagated into another disturbance until it subsides in a new equilibrium or a stable state. In addition to the physical complexity of the power plant structure itself, these dynamic behaviors of the disturbances further complicate the fault monitoring and diagnosis tasks.A data structure called a disturbance interrelation analysis graph(DIAG) is proposed in this paper, trying to capture, organize and better utilize the vast and interrelated knowledge required for power plant disturbance detection and diagnosis. The DIAG is a multi-layer directed AND/OR graph composed of 4 layers. Each layer includes vertices that represent components, disturbances, conditions and sensors respectively. With the implementation of the DIAG, disturbances and their relationships can be conveniently represented and traced with modularized operations. All the cascaded disturbances following an initial triggering disturbance can be diagnosed in the context of that initial disturbance instead of diagnosing each of them as an individual disturbance. DIAG is applied to a typical cooling water system of a thermal power plant and its effectiveness is also demonstrated.