초록 close

본 논문은 이미지에서 Quadtree를 이용한 색상-공간 특징 추출과 이미지 내에 포함되어 있는 객체의 MBR(Minimum Boundary Rectangle)을 구하여 질감 정보를 추출하는 방법을 제안한다. 제안된 방법은 각 이미지로부터 DC 이미지를 만들고 색상 좌표계를 변환한 후, Quadtree를 이용하여 영역을 분할한다. 영역의 분할 기준은 제안된 조건에 의하여 이루어지며, 각 분할된 영역으로부터 대표 색상을 추출한다. 그리고, 이미지 분할(segmentation)을 통하여 각 이미지의 객체, 객체를 포함한 배경, 또는 일부 배경의 MBR을 구하고, 제안된 알고리즘에 의하여 검색된 MBR의 웨이블릿 계수(wavelet coefficients)를 계산한다. 이 계수들이 MBR의 질감 정보가 되며, 추출된 색상-공간 정보와 질감 정보를 이용하여 제안된 유사도 계산 방법을 통하여 결과를 나타내게 된다. 제안된 방법은 원 이미지(original image)에 비해 특징 정보의 저장 공간을 53% 감소시켰으며, 성능은 유사하게 나타났다. 그리고, 질감 정보를 추가함으로써, 색상-공간 특징의 단점인 객체 정보의 손실을 보완하였고, 질의 이미지의 객체를 포함한 검색 결과를 보였다.


In this paper, we present am image retrieval method based on color-spatial features using quadtree and texture information extracted from object MBRs in an image. The proposed method consists of creating a DC image from an original image, changing a color coordinate system, and decomposing regions using quadtree. As such, conditions are present to decompose the DC image, then the system extracts representative colors from each region. And, image segmentation is used to search for object MBRs, including object themselves, object included in the background, or certain background region, then the wavelet coefficients are calculated to provide texture information. Experiments were conducted using the proposed similarity method based on color-spatial and texture features. Our method was able to reduce the amount of feature vector storage by about 53%, but was similar to the original image as regards precision and recall. Furthermore, to make up for the deficiency in using only color-spatial features, texture information was added and the results showed images that included objects from the query images.