초록 close

소재 개발의 프로세스가 고객 중심으로 다변화 되어가는 생활 환경 속에서 소비자의 감성과 선호도를 파악하는 것은 제품 판매 전략의 중요한 성공요소가 되고 있다. 본 연구에서는 사용자의 감성과 선호도를 중심으로 소재를 개발하는 방법의 하나로 협력적 필터링 개인화 기법을 응용하여 패션 디자인 추천 시스템(FDRS)을 제안한다. Textile 기반의 협력적 필터링 개인화 기술에서, 사용자들간의 유사도 가중치를 계산하기 위해서 피어슨 상관 계수(Pearson Correlation Coefficient)를 사용한다. 소재에 대한 사용자의 감성이나 선호도에 대한 Textile의 대표 감성 형용사를 추출함으로써 소재 개발을 위한 감성 형용사 데이타베이스를 구축한다. 패션 디자인 추천 시스템(FDRS)은 구축된 감성 형용사 데이타베이스를 기반으로 성향이 비슷한 사용자에게 Textile 디자인을 추천한다. 패션 디자인 추천 시스템으로 개발하여 시스템의 논리적 타당성과 유효성을 검증하기 위해 실험적인 적용을 시도하고자 한다.


It is important for the strategy of product sales to investigate the consumer's sensitivity and preference degree in the environment that the process of material development has been changed focusing on the consumer center. In the present study, we propose the Fashion Design Recommender System (FDRS) of textile design applying collaborative filtering personalization technique as one of methods in the material development centered on consumer's sensibility and preferences. In collaborative filtering personalization technique based on textile, Pearson Correlation Coefficient is used to calculate similarity weights between users. We build the database founded on the sensibility adjective to develop textile designs by extracting the representative sensibility adjective from users' sensibility and preferences about textile designs. FDRS recommends textile designs to a consumer who has a similar propensity about textile. Ultimately, this paper suggests empirical applications to verify the adequacy and the validity on this system with the development of Fashion Design Recommender System (FDRS).