초록 close

few sample objects and compressed histogram information of image databases. The histogram information is used to estimate the selectivity of spherical range queries and a small number of sample objects is used to compensate the selectivity error due to the difference of the similarity measures between meta server and local image databases. An extensive experiment on a large number of image data demonstrates that our proposed method performs well in the distributed heterogeneous environment.


웹상의 이미지 데이타베이스들은 자치성과 이질성이라는 두 가지 다른 특성을 갖고 있다. 즉 독립적으로 만들어지고 유지되며 질의 처리 방법이 서로 다르다. 분산된 이미지 데이타베이스들에 대한 내용기반 검색에서, 메타 서버의 유사성 측정함수에 대하여 서로 다른 지역 유사성 측정 함수를 갖는 데이타베이스들로부터 주어진 질의 객체와 유사한 객체들을 찾는 능력을 갖는 것은 중요하다. 현재까지, 동일한 유사성 측정 함수들을 사용하는 이미지 데이타베이스들을 선택하는 방법에 대하여 많은 연구가 진행되었으나 이미지 데이타베이스들이 다른 유사성 측정함수를 사용하는 경우에 대한 연구는 없었다. 본 논문에서는 웹상의 많은 이질적인 이미지 데이타베이스들 중 질의에 유사한 객체들을 보다 많이 가지고 있는 데이타베이스들을 찾는 문제를 다룬다. 데이타베이스들의 순위는 이미지 데이타베이스들의 압축된 히스토그램 정보와 적은 수의 표본 객체들을 사용하는 복합 추정에 기반을 두고 있다. 구형 영역 질의에 대한 선택률을 추정하기 위하여 히스토그램 정보를 사용하며, 유사성 측정 함수의 차이로 인한 선택률 오차를 보정하기 위하여 표본 객체들을 이용한다. 많은 수의 이미지 데이타에 대한 상세한 실험은 제안된 방법이 이질적인 분산 환경에서 효율적임을 보여준다.