초록 close

- Since conventional mobile robot control with one module has limitation to slove complex problems, there have been a variety of works on combining multiple modules for solving them. Recently, many researchers attempt to develop mobile robot controllers using artificial life techniques. In this paper, we develop a mobile robot controller using cellular automata based neural networks, where complex tasks are divided to simple sub-tasks and optimal neural structure of each sub-task is explored by genetic algorithm. Neural network modules are combined dynamically using the action selection mechanism, where basic behavior modules compete each other by inhibition and cooperation. Khepera mobile robot simulator is used to verify the proposed model. Experimental results show that complex behaviors emerge from the combination of low-level behavior modules.