초록 close

수치와 언어적 데이터를 조합한 퍼지 추론은 적응 필터 알고리듬에서 적용되어 왔다. 적응 IIR필터 설계에서 퍼지 전치필터는 퍼지의 Sugeno의 방법을 사용하였으며 소속함수와 추론규칙은 정확성을 개선할 수 있도록 신경망을 통하여 각각 생성하였다. 제안된 알고리듬은 성능평가를 위하여 시스템 식별에 적용하고 필터의 파라미터의 추정특성과 수렴속도에 대하여 성능을 평가하였다. 이와 같은 실험결과 직접구조에서 기존의 알고리듬의 수렴속도보다 우수한 성능을 보였으며 제안된 방법이 안정성 및 국부최소 점에 대한 문제를 극복할 수 있음을 보였다.


Fuzzy inference which combines numerical data and linguistic data has been used to design adaptive filter algorithms. In adaptive IIR filter design, the fuzzy prefilter is taken account, and applied to both direct and lattice structure. As for the fuzzy inference of the fuzzy filter, the Sugeno's method is employed. As membership functions and inference rules are recursively generated through neural network, the accuracy can be improved. The proposed adaptive algorithm, adaptive IIR filter with fuzzy prefilter, has been applied to adaptive system identification for the purposed of performance test. The evaluations have been carried out with viewpoints of convergence property and tracking properties of the parameter estimation. As a result, the faster convergence and the better coefficients tracking performance than those of the conventional algorithm are shown in case of direct structures