초록 close

본 논문은 적응성 뉴로-퍼지 인터페이스 시스템(Adaptive Neuro-Fuzzy Inference System:ANFIS)과 웨이브렛 변환 다중해상도 분해(multi-resolution Analysis:MRA)을 기반으로 한 웨이브렛 신경망을 가지고 임의의 비선형 함수 학습 근사화를 개선하는 것이다. ANFIS 구조는 벨형 퍼지 소속 함수로 구성이 되었으며, 웨이브렛 신경망은 전파 알고리즘과 역전파 신경망 알고리즘으로 구성되었다. 이 웨이브렛 구성은 단일 크기이고, ANFIS 기반 웨이브렛 신경망의 학습을 위해 역전파 알고리즘을 사용하였다. 1차원과 2차원 함수에서 웨이브렛 전달 파라미터 학습과 ANFIS의 벨형 소속 함수를 이용한 ANFIS 모델 기반 웨이브렛 신경망의 웨이브렛 기저 수 감소와 수렴 속도 성능이 기존의 알고리즘 보다 개선되었음을 확인하였다.


In this paper, it could improved on the arbitrary nonlinear function learning approximation which have the wavelet neural network based on Adaptive Neuro-Fuzzy Inference System(ANFIS) and the multi-resolution Analysis(MRA) of the wavelet transform. ANFIS structure is composed of a bell type fuzzy membership function, and the wavelet neural network structure become composed of the forward algorithm and the backpropagation neural network algorithm. This wavelet composition has a single size, and it is used the backpropagation algorithm for learning of the