초록 close

본 논문에서는, 음성 인식률 향상을 위하여 청각 특성을 기반으로 한 GFCC(gammatone filter frequency cepstrum coefficients) 파라미터를 음성 특징 파라미터로 제안한다. 그리고 전화망을 통해 얻은 고립단어를 대상으로 인식실험을 수행하였다. 성능비교를 위하여 MFCC(mel frequency cepstrum coefficients)와 LPCC(linear predictive cepstrum coefficient)를 사용하여 인식 실험을 하였다. 또한, 각 파라미터에 대하여 전화망의 채널 왜곡 보상기법으로 CMS(cepstral mean subtraction)를 도입한 방법과 적용시키지 않은 방법으로 인식실험을 하였다. 실험 결과로서, GFCC를 사용하여 인식을 수행한 방법이 다른 파라미터를 사용한 방법에 비해 향상된 결과를 얻었다.


In this paper, we propose GFCC(gammatone filter frequency cepstrum coefficient) parameter which was based on the auditory characteristic for accomplishing better speech recognition rate. And it is performed the experiment of speech recognition for isolated word acquired from telephone network. For the purpose of comparing GFCC parameter with other parameter, the experiment of speech recognition are carried out using MFCC and LPCC parameter. Also, for each parameter, we are implemented CMS(cepstral mean subtraction)which was applied or not in order to compensate channel distortion in telephone network. Accordingly, we found that the recognition rate using GFCC parameter is better than other parameter in the experimental result.