초록 close

본 논문은 차량계기판에서 벌브를 인식하기 위한 새로운 특징을 제안한다. 대부분의 모델기반 물체 인식에서 사용되는 특징으로는 물체의 다각형 근사점이 있다. 이러한 특징을 이용한 정합방식을 차량계기판의 벌브와 같은 작은 물체에 적용하며, 정합율이 낮다. 이러한 정합율을 높이기 위해서 본 논문에서는 새로운 특징을 제안한다. 제안된 특징은 물체화소의 원분포와 물체의 중심에서 경계선까지의 거리비이다. 본 논문에서는 이러한 세 개의 특징을 모두 같이 이용하기 위해서 새로운 결정함수를 정의한다. 실험 결과는 다각형 근사점을 이용한 정합방식과 3개의 특징을 모두 이용한 정합방식에서의 정합이 되지 않은 물체수로 비교를 한다.


This paper proposes new features for recognizing telltale bulb in a cluster. A typical feature employed in model-based pattern recognition is polygonal approximation points of object. But recognition using these dominant points has many mismatching counts in small model such as telltale bulb. To reduce mismatching counts, proposed features are the circle distribution of object pixel and the ratio of distance from center to boundary in object. This paper also proposes new decision function using three features. In simulation result, we make a comparison mismatching counts between recognition using dominant points and the new recognition algorithm using three features.