초록 close

음성인식 시스템과 입술독해 시스템을 결합한 하여 음향학적 잡음에 대하여 안정된 성능을 갖는 바이모달(bimodal) 시스템을 구현한다. 바이모달 시스템의 성능은 두 인식 시스템의 성능뿐만 아니라 입력 신호의 끝점검출 성능에도 크게 영향을 받는다. 본 논문에서는 음성신호와 영상신호에서 끝점을 각각 자동 검출하여 입력 음성신호로부터 음성신호에서 추정한 신호대잡음비(signal-to-noise ratio: SNR)로 두 끝점검출 결과를 선택하는 방법을 제안한다. 즉 낮은 SNR에서는 영상신호로부터 검출된 끝점을 선택하고 높은 SNR에서는 음성신호로부터 검출된 끝점을 선택함으로써 음향학적 잡음에 대하여 견실하게 끝점을 검출한다. 제안한 끝점검출 방법이 적용된 바이모달 시스템이 강한 음향학적 잡음에 대하여 만족스러운 인식성능을 나타냄을 실험결과에서 확인할 수 있다.


The performance of a bimodal system is affected by the accuracy of the endpoint detection from the input signal as well as the performance of the speech recognition or lipreading system. In this paper, we propose the endpoint detection method which detects the endpoints from the audio and video signal respectively and utilizes the signal-to-noise ratio (SNR) estimated from the input audio signal to select the reliable endpoints to the acoustic noise. In other words, the endpoints are detected from the audio signal under the high SNR and from the video signal under the low SNR. Experimental results show that the bimodal system using the proposed endpoint detector achieves satisfactory recognition rates, especially when the acoustic environment is quite noisy.