초록 close

본 논문에서는 문자의 형식정보를 이용하여 인식대상 문자군을 분할하여 인쇄체 문자를 인식하는 방법을 제안한다. 인식대상 문자를 전체 7개의 형식으로 나누는데, 한글 문자의 경우 자소 조합 방식에 따라 6개의 형식으로 분류하며, 영숫자 및 기호 문자의 경우 1개의 형식으로 분류한다. 각 문자형식에 따라 입력 문자영상을 몇 개의 인식단위로 나누고, 이에 대한 방향각도 특징을 추출하여 신경망 인식기에 입력하여 인식한 후 인식된 각 인식단위를 조합하여 문자인식을 한다. 각각 구현된 7가지 형식별 문자인식기를 단순 스위칭 및 통합 방법과 두 방법의 변형 방법 등 7가지의 방법으로 결합하여 최종 문자인식을 하였다. 실험 결과, 단순 스위칭 방법은 98.62%, 단순 통합 방법은 90.54%, 나머지 5가지의 변형 방법들이 97.35%에서 98.65%의 인식 성능을 보였다.


In this paper, we propose machine printed character recognition methods which utilize the character type information and divide the character clusters. The characters are subdivided into a total of seven types, of which six types are for Hangul according to the grapheme combination fashions and one type for English characters, numerals, and symbols. According to the character type, we separate input character image into several recognition units and recognize them by using the direction angle feature. The recognition for each character type is completed by combining recognition units which are recognized by neural networks respectively. For combining a total of seven character recognizers, we implemented seven methods such as switching method, integrating method, and their several variants. As experimental results, we obtained 98.2% recognition rate of simple switching method, 90.54% of integrating one, and between 97.35% and 98.65% of five variants.