초록 close

본 논문에서는 로봇 매니퓰레이터의 제어에 사용할 수 있는 신경망 외란 관측기를 제안하도록 한다. 제안한 신경망 외란 관측기는 다층신경망의 구조로 신경망 외란관측기의 오차와 제어 오차가 충분히 작은 콤팩트 집합에 절대 상시 유계된다. 본 논문에서 제안하는 신경망 외란 관측기는 기존의 적응 제어기의 단점을 해결한 방식으로 복잡한 회귀 모델을 필요로 하지 않는다. 끝으로 제안한 방식을 3관절 로봇에 적용하여 그 타당성을 확인한다.


A neural network disturbance observer for a robotic manipulator is derived in this paper. The neural network used as the disturbance observer is a feedforward MLP(multiple-layered perceptron) network. The uniform ultimate boundness(UUB) of the proposed neural disturbance observer and the control error within a sufficiently small compact set is guaranteed. This neural disturbance observer method overcomes the disadvantages of the existing adaptive control methods which require the tedious analysis of the regressor matrix of the given manipulator. The effectiveness of the proposed neural disturbance observer is demonstrated by the application to the three-link robotic manipulator.