초록 close

이 논문에서는 표적 추적에 사용되는 PSN(Probabilistic Strongest Neighbor) 필터의 추적 성능을 예측한다. PSN 필터는 가장 강한 신호 크기를 가진 측정이 표적이외의 것으로부터 발생할 수 있다는 사건을 충분히 고려하기 때문에, 추적 성능에서 뿐만 아니라, 계산량 측면에서도 PDA(Probabilistic Data association) 필터보다 뛰어나다고 알려져 있다. 추적필터의 추정오차 공분산행렬(covariance matrix)은 추적의 성능을 결정하는 성능지수(performance index)로 널리 사용된다. PSN 필터의 추정오차 공분산행렬은 측정 데이터의 함수로써, 측정 데이터와 무관하게 추적기의 성능을 표현하기 위해서 HYCA(HYbrid Conditional Average)방법을 이용하여 추정오차 공분산행렬의 기대값에 대한 식을 제시하였다. 수치실험을 통하여 이 논문에서 제시한 성능 예측이 타당함을 보인다.


In this paper, we predict tracking performance of the probabilistic strongest neighbor filter (PSNF). The PSNF is known to be consistent and superior to the probabilistic data association filter (PDAF) in both performance and computation. The PSNF takes into account the probability that the measurement with the strongest intensity in the neighborhood of the predicted target measurement location is not target-originated. The tracking performance of the PSNF is quantified in terms of its estimation error covariance matrix. The estimation error covariance matrix is approximately evaluated by using the hybrid conditional average approach (HYCA). We performed numerical experiments to show the validity of our performance prediction.