초록 close

본 논문에서는 CITE를 포함한 2차 반복 학습제어 방법이 수렴 성능의 향상과 외란에 대한 강인성 향상에 덧붙여 초기 오차가 있음에도 불구하고 이를 극복할 뿐만 아니라 기존의 알고리즘보다 더 빠른 수렴 능력이 있음을 확인한다. 또한 불안정한 결과를 낳는 높은 학습 게인의 경우에도 CITE를 추가한 본 학습제어 방법에 의해 안정화됨으로써, 빠른 수렴 특성과 강인성 향상을 가져올 수 있음을 보인다. 그리고 본 알고리즘을 선형 시변 시스템에 대해 적용한 시뮬레이션 결과를 통해 초기 오차의 극복 능력이 뛰어남을 확인하고, 아울러 각 학습 게인들이 수렴 속도와 안정성에 미치는 영향을 상세히 분석한다.


In this paper, we show that the 2nd-order iterative learning control algorithm with CITE is more effective and has better convergence performance than the algorithm without CITE in the case of the existence of initialization errors, for the trajectory-tracking control of dynamic systems with unidentified parameters. In contrast to other known methods, the proposed learning control scheme utilize more than one past error history contained in the trajectories generated at prior iterations, and a CITE term is added in the learning control scheme for the enhancement of convergence speed and robustness to disturbances and initialization errors. And the convergence proof of the proposed algorithm in the case of the existence of initialization error is given in detail, and the effectiveness of the proposed algorithm is shown by simulation results.