초록 close

분산 공간 데이터베이스 시스템들 사이에서 빈번히 수행되는 공간 죠인 질의는 공간 데이터의 대용량성과 그 복잡성으로 인하여 공간 연산 수행 시 서버에 CPU 및 디스크 I/O 상의 부하를 일으킨다. 본 논문은 이러한 분산 공간 데이터베이스 시스템에서 수행 비용이 많이 드는 원격 사이트간의 공간 죠인 질의를 병렬적으로 수행하는 기법을 제안한다. 본 기법은 죠인에 참여하는 릴레이션들 중 하나를 이등분 하는 방법으로 공간 죠인 연산을 분리한 후, 질의 수행에 참여하는 두 서버에게 죠인 연산을 분배한다. 각 서버는 분할된 공간 죠인 연산을 동시에 연쇄적으로 처리하고 결과를 병합하여 최종 죠인 결과를 생성한다. 본 기법은 릴레이션을 효율적으로 분할하여 죠인을 수행함으로써 공간 연산에 참여하는 객체의 수를 절반으로 줄이며 R-Tree 등 공간 인덱스의 탐색 횟수와 그 범위를 감소시킨다. 또한 릴레이션을 영역단위로 분할하여 객체의 수를 줄이고 참여 객체를 군집화 시킴으로써 죠인 연산시에 디스크와 버퍼의 사용 효율을 높인다.


In distributed spatial database systems, users may issue a query that joins two relations stored ay different sites. The sheer volume and complexity of spatial data bring out expensive CPU and I/O costs during the spatial join processing. This paper shows a new spatial join method which joins two spatial relation in a parallel way. Firstly, the initial join operation is divided into two distinct ones by partitioning one of two partitioning relations based on the region. This two join operations are assigned to each sites and executed simultaneously. Finally, each intermediate result sets from the two join operations are merged to an ultimate result set. This method reduces the number of scanning spatial indices. And it does not materialize the temporary results by implementing the join method can lead to efficient use in term of buffer and disk by narrowing down the joining region and decreasing the number of spatial objects.