초록 close

본 논문에서는 지문 영상의 컨벡스 (convex) 구조를 이용하여 특징점을 추출하는 방법을 제안하였다. 지문영상에서 융선은 일정한 방향성을 가지며 융선의 단면은 주기성이 있는 사인파로 간주할 수 있다. 사인파 신호에서 국부 최대 위치를 검출함으로써 대략적인 한 화소 단위의 융선 추출이 가능하며 사인파 신호의 볼록한 컨벡스는 융선 영역에 해당한다. 이러한 지문의 특징을 이용하여 특징점을 효과적으로 찾는 방법을 제안한다. 이 과정에서 파라미터를 없애고 계산량을 줄임으로써 다양한 환경의 시스템에 적용 가능함을 보였다.


In this paper, we propose a new fingerprint feature extraction method using the convex structure. A fingerprint minutiae flows along the uniform direction and is regarded as a sinusoidal signal across the normal direction. Local maxima of the signal represent coarse thinned one-pixel-wide ridges in which the convex region of the signal correspond to ridges. The proposed fingerprint feature extraction method detects the convex structure and local maxima. Finally fingerprint features are extracted from one-pixel-wide ridges. Because it has no parameter, it is efficient for various fingerprint identification systems.