초록 close

본 논문에서는 RBF 신경망 외란 관측기를 이용한 영구자석형 동기모터의 속도추종 제어기를 제안한다. 먼저 공칭 모델에 대하여 입출력 선형화에 기반한 속도 제어기를 설계하고 RBF 신경망 외란 관측기에 의해 시스템의 불확실성을 보상한다. 시스템의 파라미터와 부하 토크의 변동을 동시에 추정하는 RBF 신경망 외란 관측기를 이용함으로써 제안한 제어 알고리즘은 시스템의 불확실성에 강인한 특성을 갖는다. 마지막으로 모의실험을 통하여 제안된 제어기의 타당성을 검증한다.


In this paper, the speed controller of permanent-magnet synchronous motor (PMSM) using the RBF neural (NN) disturbance observer is proposed. The suggested controller is designed using the input-output feedback linearization technique for the nominal model of PMSM and incorporates the RBF NN disturbance observer to compensate for the system uncertainties. Because the RBF NN disturbance observer which estimates the variation of a system parameter and a load torque is employed, the proposed algorithm is robust against the uncertainties of the system. Finally, the computer simulation is carried out to verify the effectiveness of the proposed method.


키워드close

교류동기모터, 강인속도제어, RBF, 외란관측기