초록 close

비디오 영상으로부터 카메라의 움직임과 3차원 구조를 복원하는 기술은 다양한 분야에 응용되고 있다. 특히 비교정(un-calibrated) 동영상을 해석하기 위해서는 대상 영상의 정보만을 이용하는 카메라의 자동 보정(auto-calibration)기술이 필수적이다. 그러나 비디오 상의 많은 프레임에 안정적으로 이를 적용하려면 기존의 자동 보정기술은 무리조정(bundle adjustment) 또는 비선형 최적화 등의 매우 복잡한 과정이 요구된다. 본 논문에서는 최적화 과정 없이도 정확하게 대상 카메라의 궤적과 3차원 구조를 복원하는 새로운 방법이 제안된다. 첫 번째 단계에서 대상 시퀀스에서 카메라 궤적의 해석에 적절한 키프레임(key-frame)을 선택하여 전체 연산 시간을 줄이며, 두 번째 과정에서 보다 정확한 카메라 자동 보정을 하기 위해 이미 추출된 키프레임 가운데 절대 2차 원추곡면(absolute quadric)의 추정을 통해 오차가 많이 포함된 키프레임을 제거한다. 가상 및 실사영상에 대한 실험결과로부터 제안된 방법의 성능을 확인하였으며, 다양한 실사 영상을 대상으로 가상의 3차원 모델을 합성한 결과도 제시하였다.


Camera pose and scene geometry estimation from video sequences is widely used in various areas such as image composition. Structure and motion recovery based on the auto-calibration algorithm can insert synthetic 3D objects in real but un-modeled scenes and create their views from the camera positions. However, most previous methods require bundle adjustment or non-linear minimization process for more precise results. This paper presents a new auto-calibration algorithm for video sequence based on two steps: the one is key-frame selection, and the other removes the key-frame with inaccurate camera matrix based on an absolute quadric estimation by LMedS. In the experimental results, we have demonstrated that the proposed method can achieve a precise camera pose estimation and scene geometry recovery without bundle adjustment. In addition, virtual objects have been inserted in the real images by using the camera trajectories.