초록 close

본 논문에서는 사용자가 질의를 원하는 물체 영역을 선택하면 유사 물체를 영상 데이터베이스 내에서 검색할 수 있는 내용기반 영상검색 시스템을 구현하였다. 질의영상은 색상성분과 그레이성분으로 나누어져 웨블릿 변환되고 색상성분에서는 컬러 오토코릴로그램과 분산으로 색상특성을 추출한다. 그리고 그레이성분에서는 오토코릴로그램과 GLCM을 통해 질감특성을 추출한다. 이렇게 구한 2개 성분에서의 특성들을 이용하여 데이터베이스내의 영상들과 각각 유사도를 비교하여 검색하게 된다. 이때 각 유사도에 가중치를 적용하였다. 한 가지 성분보다 두 가지 성분에서 특성을 구하여 각각의 단점을 보완하였고 실험 결과에서도 소환성(recall) 및 정확성(precision)이 향상됨을 볼 수 있었다. 또한 가중치를 적용함으로써 검색 효율이 개선되었다. 그리고 데이터베이스내 영상들의 여러 특성을 특성 라이브러리내에 자동 색인화 시킴으로써 고속의 영상 검색이 가능하였다.


In this paper, we implemented a content-based image retrieval system that user can choose a wanted query region of object and retrieve similar object from image database. Query image is induced to wavelet transformation after divided into hue components and gray components that hue features is extracted through color autocorrelogram and dispersion in hue components. Texture feature is extracted through autocorrelogram and GLCM in gray components also. Using features of two components, retrieval is processed to compare each similarity with database image. In here, weight value is applied to each similarity value. We make up for each defect by deriving features from two components beside one that elevations of recall and precision are verified in experiment results. Moreover, retrieval efficiency is improved by weight value. And various features of database images are indexed automatically in feature library that make possible to rapid image retrieval.