초록 close

본 논문에서는 블록 기반으로 부호화된 영상에 대하여 블록 분류 (block classification)와 다층 퍼셉트론 (multi-layer perceptron, MLP) 모델을 이용한 적응적 블록화 현상 제거 알고리듬을 제안하였다. 제안한 방법에서는 각 블록을 DCT 계수의 분포 특성에 따라 네 개의 클래스로 분류한 다음, 인접한 두 블록의 클래스 정보에 따라 수평 및 수직 블록 경계 영역에 대하여 적응적으로 신경망 필터를 적용한다. 즉, 평탄한 영역, 수평 방향 에지 영역, 수직 방향 에지 영역, 및 복잡한 영역에 대하여 각각 서로 다른 신경망 필터를 수평 및 수직 방향으로 적용하여 블록화 현상을 제거한다. 모의 실험 결과를 통하여 제안한 방법이 객관적 화질 및 주관적 화질 측면에서 기존의 방법보다 그 성능이 우수함을 확인하였다.


In this paper, a novel algorithm is proposed to reduce the blocking artifacts of block-based coded images by using block classification and MLP. In the proposed algorithm, we classify the block into four classes based on a characteristic of DCT coefficients. And then, according to the class information of neighborhood block, adaptive neural network filter is performed in horizontal and vertical block boundary. That is, for smooth region, horizontal edge region, vertical edge region, and complex region, we use a different two-layer neural network filter to remove blocking artifacts. Experimental results show that the proposed algorithm gives better results than the conventional algorithms both subjectively and objectively.