초록 close

전방 관측 적외선 영상에서 가려짐이 없거나 가려짐이 있는 군용차량을 인식할 수 있는 자동 표적인식 알고리즘을 제안한다. 표적을 배경으로부터 분리한 후에 광역적인 형상 특징을 찾기 위해 표적의 경계선에 대해 물체의 중심을 기준으로 방사함수 (radial function)를 정의한다. 또한, 형상 정보가 집중되어 있는 표적의 윗 부분으로부터 국부적인 형상 특징을 찾기 위해 두 개의 특징점과 경계선으로부터 거리함수를 정의한다. 두 개의 함수와 경계선으로부터 4개의 광역적 형상 특징과 4개의 국부적 형상 특징을 제안한다. 이 특징들은 병진, 회전 그리고 크기변화에 대해 기존의 특징 벡터들 보다 좋은 불변성을 가진다. 이 특징들을 이용하여 가려짐이 있는 표적과 가려짐이 없는 표적을 구분하여 인식하기 위한 새로운 분류 방식을 제안한다. 실험을 통해 제안한 특징들의 불변성과 인식 성능을 기존의 특징벡터들과 비교하여 제안한 표적 인식 알고리즘의 우수성을 입증한다.


This paper proposes an ATR (Automatic Target Recognition) algorithm for identifying non-occluded and occluded military vehicles in natural FLIR (Forward Looking InfraRed) images. After segmenting a target, a radial function is defined from the target boundary to extract global shape features. Also, to extract local shape features of upper region of a target, a distance function is defined from boundary points and a line between two extreme points. From two functions and target contour, four global and four local shape features are proposed. They are much more invariant to translation, rotation and scale transform than traditional feature sets. In the experiments, we show that the proposed feature set is superior to the traditional feature sets with respect to the similarity-transform invariance and recognition performance.