초록 close

본 논문에서는 PDA용 온라인 필기체 한자 인식기를 구현하였다. PDA는 PC보다 느린 CPU와 적은 메모리를 사용하기 때문에, 본 논문에서는 적은 연산량과 적은 메모리를 사용하면서 높은 인식률을 갖는 인식기를 개발하는데 초점을 맞추었다. 따라서, 빠른 인식을 위하여 적은 연산 과정을 갖는 인덱스 매칭 방법을 사용하였고, 필기 한자의 획순 변동과 획수 변형을 수용함과 동시에, 문자 모델의 저장을 위한 메모리를 최소화하기 위하여 유닛 재구성 방법을 제안하였다. 사전에 정의된 유닛을 사용하여 1800개의 표준 문자 모델을 설정하였다. 입력된 데이터는 전처리 및 특징 추출 과정을 거친 후 표준 문자 모델과의 획수 및 형태적 특징을 기준으로 선정된 후보 문자들과의 유사도를 측정한다. 실험 대상 문자는 중·고등학교 표준 기초 한자 1800자를 대상으로 하였으며, 획수와 획순에 구애받지 않고 정서체로 필기한 5인의 문자 셍을 사용하였다. 실험은 문자 당 평균 인식 속도와 인식률을 측정하였으며, 이 결과 문자 셍에 대한 평균 인식률 94.3%를 얻었다. 문자 당 평균 인식 속도는 MIPS R4000 CPU를 사용한 PDA에서 0.16 초의 결과를 내었다.


In this paper, we propose the realization of on-line handwritten Chinese character recognition for mobile personal digital assistants (PDA). We focus on the development of an algorithm having a high recognition performance under the restriction that PDA requires small memory storage and less computational complexity in comparison with PC. Therefore, we use index matching method having computational advantage for fast recognition and we suggest a unit reconstruction method to minimize the memory size to store the character models and to accomodate the various changes in stroke order and stroke number of each person in handwriting Chinese characters. We set up standard model consisting of 1800 characters using a set of pre-defined units. Input data are measured by similarity among candidate characters selected on the basis of stroke numbers and region features after preprocessing and feature extracting. We consider 1800 Chinese characters adopted in the middle and high school in Korea. We take character sets of five person, written in printed style, irrespective of stroke ordering and stroke numbers. As experimental results, we obtained an average recognition time of 0.16 second per character and the successful recognition rate of 94.3% with MIPS R4000 CPU in PDA.