초록 close

다중 텍스쳐 영상으로부터 최적의 텍스쳐 특징을 생성하는 최적 필터 설계는 표면, 물체, 모양, 깊이 인식 등을 위한 텍스쳐 분석에 있어서 가장 성능이 뛰어난 기술 중의 하나이다. 그러나 대부분의 최적 필터 설계는 많은 복잡한 계산량과 교사적 특성에 의해서 효율적인 텍스쳐 영역의 분할을 수행하지 못하는 실정이다. 따라서 본 논문에서는 다중 텍스쳐 영상에 내재하는 각 텍스쳐들의 공간 주파수 분석에 의한 효율적인 최적 가버필터 설계 방법을 제시한다. 설계된 최적 필터는 "Brodaz texture book"서 발췌한 다양한 형태의 다중 텍스쳐 영상을 생성하여 실험한 후 성공적인 결과를 보인다.


The design of optimal filter yielding optimal texture feature separation is a most effective technique in many texture analyzing areas, such as perception of surface, object, shape and depth. But, most optimal filter design approaches are restricted to the issue of computational complexity and supervised problems. In this paper, Our proposed method yields new insight into the design of optimal Gabor filters for segmenting multiple texture images. The optimal frequency of Gabor filter is turned to the optimal frequency of the distinct texture in frequency domain. In order to show the performance of the designed filters, we have attempted to build a various texture images. Our experimental results show that the performance of the system is very successful.