초록 close

본 논문에서는 CDHMM 음성인식기의 인식성능을 향상시키기 위해 상태 당 관측밀도함수 수 변화에 의한 화자적응 알고리듬을 제안하였다. 제안한 방법은 CDHMM의 각 상태마다 관측 확률밀도함수의 가지 수가 두 개 이상이 될 수도 있게 하여 발음특성의 다양성을 반영할 수 있게 하였다. 가지 수는 각 상태에 속하는 적응음성의 프레임 수에 따라 정하는 방법과 특징벡터 행렬식에 따라 정하는 방법으로 하였다. 이 두 방법중의 어느 하나로 관측 확률밀도함수의 가지가 결정되면, 세분화된 각 가지로부터 MAP 파라미터를 추출함으로써 정밀한 화자적응모델의 파라미터를 구할 수 있었다. 아울러 적응음성을 상태분할 할 때 기존의 화자독립모델을 사전정보로 이용함으로써 ML 추정시의 초기 상태분할 오류의 영향을 줄여 기존 상태분할 방법의 단점을 개선하였다. 그리고 상태지속분포를 화자에 적응시킴으로써 화자 고유의 발음속도와 발음패턴 등의 음성특성을 흡수하도록 하였다. 제안한 방법들의 타당성을 확인하기 위한 실험에서 제안한 방법이 기존 방법에 비해 높은 인식률을 얻음을 확인하였다.


A new approach to improve the speaker adaptation algorithm by means of the variable number of observation density functions for CDHMM speech recognizer has been proposed. The proposed method uses the observation density function with more than one mixture in each state to represent speech characteristics in detail. The number of mixtures in each state is determined by the number of frames and the determinant of the variance, respectively. The each MAP parameter is extracted in every mixture determined by these two methods. In addition, the state segmentation method requiring speaker adaptation can segment the adapting speech more precisely by using speaker-independent model trained from sufficient database as a priori knowledge. And the state duration distribution is used for adapting the speech duration information owing to speaker's utterance habit and speed. The recognition rate of the proposed methods are significantly higher than that of the conventional method using one mixture in each state.