초록 close

본 논문에서는 복잡한 배경에서의 얼굴 추출 방법을 제안한다. 제안된 알고리즘은 적응 퍼지 색 분할 기법을 사용하여 얼굴색과 머리색을 분할시킨다. 얼굴색 분포는 Y,Cb,Cr 색 공간내에서 유도되어지고, 조명 값에 적응적인 퍼지 시스템을 사용하여 얼굴색을 구분해낸다. 머리색은 RGB 색 공간내에서 구분되어진다. 전처리 과정을 거쳐 추출되어진 얼굴색과 머리색 영역에 컨벡스 헐을 적용하여 그들의 관계를 통해 최종적인 얼굴 영역이 추출되어진다. 제안된 방법은 기존의 패턴 매칭 방법에 비해 효율적인 성능을 나타낸다. 제안된 알고리즘의 유효성을 실험을 통해 증명하며, 색 영역에서의 제한 조건 없이 성공적으로 얼굴 영역을 추출해 냄을 알 수 있다.


This paper addresses a method to automatically detect out a person's face from a given image that consists of a hair and face view of the person and a complex background scene. Our method involves an effective detection algorithm that exploits the spatial distribution characteristics of human skin color via an adaptive fuzzy color classifier (AFCC). The universal skin-color map is derived on the chrominance component of human skin color in Cb, Cr and their corresponding luminance. The desired fuzzy system is applied to decide the skin color regions and those that are not. We use RGB model for extracting the hair color regions because the hair regions often show low brightness and chromaticity estimation of low brightness color is not stable. After some preprocessing, we apply convex-hull to each region. Consequent face detection is made from the relationship between a face's convex-hull and a head's convex-hull. The algorithm using the convex-hull shows better performance than the algorithm using pattern method. The performance of the proposed algorithm is shown by experiment. Experimental results show that the proposed algorithm successfully and efficiently detects the faces without constrained input conditions in color images.