초록 close

웨이블릿 함수의 경우 스케일링 함수에서 비롯되었으며, 스케일과 중심을 결정함으로써 신경회로망의 노드로 구성된다. 본 논문에서는 웨이블릿 함수를 이용하여 망을 구성하는 과정에 스케일링 함수를 은닉층의 노드로 복합 구성한 구조를 제안하고자 한다. 제안한 구조의 특징은 스케일링 함수를 이용하여 대강 근사(rough approximation)를 행한 다음, 웨이블릿 함수를 이용하여 미세 근사(fine approximation)를 행하도록 신경회로망의 은닉층을 복합 구성하는 데 있다. 또한, 복합 신경회로망을 구성하는 과정에서 미세 근사에 필요한 웨이블릿 함수의 개수를 유전 알고리즘을 이용하여 결정하는 초기 구조의 최적화를 도모하고자 한다.


The wavelet functions are originated from scaling functions and can be used as activation function in the hidden node of the network by deciding two parameters such as scale and center. In this paper, we would like to propose the mixed structure. When we compose the WNN using wavelet functions, we propose to set a single scale function as a node function together. The properties of the proposed structure is that while one scale function approximates the target function roughly, the other wavelet functions approximate it finely. During the determination of the parameters, the wavelet functions can be determined by the global search algorithm such as genetic algorithm to be suitable for the suggested problem. Finally, we use the back-propagation algorithm in the learning of the weights.