초록 close

내용기반 이미지검색이란 색상, 형태 및 질감 등의 저-수준 특징정보를 이용하여 이미지 데이터베이스를 구축하고, 이미지에 대한 검색요구가 발생했을 때 사용자가 찾고자 하는 이미지와 유사한 이미지를 제공하는 시스템으로 정의된다. 데이터베이스의 구축시간과 사용자가 질의를 입력한 후 결과를 얻을 때까지의 반응시간을 나누어 고려할 때, 사용자는 반응시간에 보다 관심을 갖는 것이 일반적이다. 내용기반 이미지검색 시스템에서 질의이미지와 데이터베이스 내의 이미지와의 유사도 비교시간이 전체 반응시간 중에서 가장 큰 비중을 차지한다. 본 논문에서는 이러한 유사도 비교시간을 최소화하기 위해 특징벡터의 클러스터링 기법을 적용한 2단계 탐색방법을 제안한다. 실험 결과를 통해 제안하는 2단계 탐색방법으로 대용량의 이미지 데이터베이스 내의 전체 이미지에 대한 원 특징정보와 비교하는 전체검색에 비해, 동일한 적합성을 보장하면서 평균적으로 2배 이상의 검색속도 향상을 확인하였으며, 이미지의 수가 더욱 커질수록 효과적임을 입증하였다.


A content-based image retrieval(CBIR) system builds the image database using low-level features such as color, shape and texture and provides similar images that user wants to retrieve when the retrieval request occurs. What the user is interest in is a response time in consideration of the building time to build the index database and the response time to obtain the retrieval results from the query image. In a content-based image retrieval system, the similarity computing time comparing a query with images in database takes the most time in whole response time. In this paper, we propose the two-phase search method with the clustering technique of feature vector in order to minimize the similarity computing time. Experimental results show that this two-phase search method is 2-times faster than the conventional full-search method using original features of all images in image database, while maintaining the same retrieval relevance as the conventional full-search method. And the proposed method is more effective as the number of images increases.