초록 close

대기순환모형(GCM)에 의하면 온실가스농도의 증가는 전구와 국지규모의 기후변화에 중요한 관련이 있음이 알려져 있다. GCM은 단일지점의 기상학적 순환과정을 분석하는데는 불확실성을 지니고 있기 때문에 현재로서는 축소기법이 대기순환모형(GCM)의 개발자들이 제공할 수 있는 것과 모형을 이용하여 기후영향을 평가하는 연구자들이 요구하는 것 사이의 차이점을 연계하기 위해 이용되고 있다. 본 논문에서는 통계학적 축소기법을 이용하여 국지규모의 기후변화의 영향을 평가할 수 있는 방법을 제시하고자 하였다. 본 방법을 이용한다면 현재와 미래의 국지적 규모의 기후강제력 하에서의 지표 기상변수의 시나리오를 저 비용으로 신속하게 작성할 수 있다. 기후변화시나리오의 작성은 통계학적 회귀방법인 전이함수와 추계학적 일기발생모형을 이용하였다. 전이함수는 저해상도의 GCM 격자 변수들을 고해상도의 단일 지점의 변수들로 변환시키며, 이 변수들은 단일 지점의 특정 일 지표 기상변수를 모의하기 위해 추계학적 일기발생 모형의 매개변수를 수정하는데 이용되었다. 본 연구에서는 YONU GCM을 이용하여 제어실험과 점증실험을 실시하여 전구규모의 기후변화시나리오를 작성하였다.


From the General Circulation Models(GCMs), it is known that the increases of concentrations of greenhouse gases will have significant implications for climate change in global and regional scales. The GCM has an uncertainty in analyzing the meteorologic processes at individual sites and so the "downscaling" techniques are used to bridge the spatial and temporal resolution gaps between what, at present, climate modellers can provide and what impact assessors require. This paper describes a method for assessing local climate change impacts using a robust statistical downscaling technique. The method facilitates the rapid development of multiple, low-cost, single-site scenarios of daily surface weather variables under current and future regional climate forcing. The construction of climate change scenarios based on spatial regression(transfer function) downscaling and on the use of a local stochastic weather generator is described. Regression downscaling translates the GCM grid-box predictions with coarse resolution of climate change to site-specific values and the values were then used to perturb the parameters of the stochastic weather generator in order to simulate site-specific daily weather values. In this study, the global climate change scenarios are constructed using the YONU GCM control run and transient experiments.