초록 close

- 본 연구는 격자형 가우시안 플룸모형을 Matlab언어를 이용하여 구축한 후, 영광원자력시설의 부지에서 시행된 추적자 확산실험자료를 이용하여 예측력을 평가하였다. 풍하방향으로는 20km까지 10m간격으로 격자를 구분하였으며, 풍하방향에 수직인 지표방향은 방출점을 중심으로 상하 5km를 각각 10m 간격으로 구분하여 1,990×1,000×1의 격자망으로 구성하였다. 실험당시의 대기안정도는 P-G방법에 의해 B등급으로 나타났으며 이를 이용하여 각 격자의 농도예측을 수행하였다. 반경 3km의 A-line의 경우가 반경 8km근방의 B-line에 비해 격자형 가우시안 모형의 예측력이 뛰어난 것으로 나타났으며, 방출점에서 거리가 멀어질수록 P-G방법에 의한 확산폭의 산정은 모형의 예측력을 떨어뜨리는 것으로 나타났다. 모형의 예측력을 향상시키기 위하여 P-G방법에 의한 확산폭인 sigma y 및 sigma z를 선형계획법을 이용하여 수정하였다. 수정된 확산인자를 적용한 결과 3km와 8km 모두 모형의 예측력이 향상됨을 확인할 수 있었다. 향후 추적자 확산실험 데이터의 축적을 통해 기상조건에 따른 확산인자에 대한 경험식을 개발한다면 격자형 가우시안 모델이 원자력시설에서의 대기질 환경영향평가에 유용하게 쓰일 수 있을 것으로 기대된다.


- We developed a grid-based Gaussian plume model to evaluate tracer release data measured at Young Gwang nuclear site in 1996. Downwind distance was divided into every 10m from 0.1km to 20km, and crosswind distance was divided into every 10m centering released point from -5km to 5km. We determined dispersion factors, and using Pasquill-Gifford method computed by atmospheric stability. Forecasting ability of the grid-based Gaussian plume model was better at the 3km away from the source than 8km. We confirmed that dispersion band must be modified if receptor is far away from the source, otherwise P-G method is not appropriate to compute diffusion distance and diffusion strength in case of growing distance. So, we developed an empirical equation using linear programming. An objective function was designed to minimize sum of the absolute value between observed and computed values. As a result of application of the modified dispersion equation, prediction ability was improved rather than P-G method.