초록 close

Torsional oscillations of a system incorporating a Hooke's joint are investigated by adopting a nonlinear 2-degree-of-freedom model. Linear and Van der Pol transformations are applied to obtain the equations of motion to which the method of averaging can be readily applied. Various subharmonic and combination resonances are identified with the conditions of their occurrences. Applying the method of averaging leads to the reduced amplitude- and phase-equations of motion, of which constant and periodic solutions are obtained numerically. The periodic solution which emerges from Hopf bifurcation point experiences period doubling bifurcation leading to infinite solution rather than chaotic solution.