초록 close

로짓모형은 선택대안에 대한 확률 계산이 용이하고, 설명변수의 파라메타 추정이 용이하기 때문에 교통 수단선택모형으로 널리 쓰여지고 있다. 그러나 이러한 로짓모형은 수단선택 효용함수의 오차항 분포가 선택 대안간에 독립적이고, 그 분산이 동일하다는(IID:Independent and Identically Distributed)가정을 내포한다.본 연구는 수단선택 효용오차의 분산이 수단간에 동일하다는 가정을 완화시키는 이분산 로짓모형 추정에 관한 연구이다. 수단선택 효용오차항의 동분산성을 극복함으로써 보다 현실적인 통행자의 수단선택행태를 반영하는 로짓모형을 추정하는데 본 연구의 목적이 있다. 이를 위해 로짓모형 오차항의 분산과 직접적인 관련이 있는 규모인자(scale factor)를 도입하였다. 이는 대중교통과 승용차의 통행시간차이에 따른 이분산성을 고려하도록 정의되었으며, 이를 통행시간 파라메타 추정에 활용하였다.본 연구에서 개발된 이분산 로짓모형의 추정 결과, 통행자의 통행시간이 증가하면서 대중교통수단과 승용차의 통행시간차이가 동일하더라도 통행자의 대중교통 수단선택확률이 차이를 보임으로 현실적인 통행자의 수단선택행태를 반영하는 것으로 판명되었다.


Because the Logit model easily calculates probabilities for choice alternatives and estimates parameters for explanatory variables, it is widely used as a traffic mode choice model. However, this model includes an assumption which is independently and identically distributed to the error component distribution of the mode choice utility function. This paper is a study on the estimation of the Heteroscedastic Logit Model, which mitigates this assumption. The purpose of this paper is to estimate a Logit model that more accurately reflects the mode choice behavior of passengers by resolving the homoscedasticity of the model choice utility error component. In order to do this, we introduced a scale factor that is directly related to the error component distribution of the model. This scale factor was defined so as to take into account the heteroscedasticity in the difference in travel time between using public transport and driving a car, and was used to estimate the travel time parameter. The results of the Logit Model estimation developed in this study show that Heteroscedastic Logit Models can realistically reflect the mode choice behavior of passengers, even if the difference in travel time between public and private transport remains the same as passenger travel time increases, by identifying the difference in mode choice probability of passengers for public transportation.