초록 close

parameters is presented. It is difficult to obtain all possible solutions with sharp bounds even an optimum scheme is adopted when there are many interval structural parameters. With the interval algorithm, the expressions of the interval stiffness matrix, damping matrix and mass matrices are developed. Based on the matrix perturbation theory and interval extension of function, the upper and lower bounds of dynamic response are obtained, while the sharp bounds are guaranteed by the interval operations. A numerical example, dynamic response analysis of a box cantilever beam, is given to illustrate the validity of the present method.


parameters is presented. It is difficult to obtain all possible solutions with sharp bounds even an optimum scheme is adopted when there are many interval structural parameters. With the interval algorithm, the expressions of the interval stiffness matrix, damping matrix and mass matrices are developed. Based on the matrix perturbation theory and interval extension of function, the upper and lower bounds of dynamic response are obtained, while the sharp bounds are guaranteed by the interval operations. A numerical example, dynamic response analysis of a box cantilever beam, is given to illustrate the validity of the present method.