초록 close

다양한 환경에서 사람의 안전을 위해 비전 기술을 이용하여 극심한 통증을 감지하는 연구가 필요하다. 예를 들어 운전 중에 갑작스런 고통이나 심 정지 등의 위급한 상황으로 인해서 대형사고가 발생할 수 있으므로, 본 논문에서는 인간의 위급한 상황을 검출하기 위해 얼굴 표정 인식 기반의 통증 검출 시스템을 제안한다. 제안하는 시스템은 극심한 통증을 느꼈을 때의 얼굴 표정 클래스를 별도로 구성하고 LeNet 모델을 수정하여 사용하였다. 또한, 학습 데이터 내 노이즈를 해결하기 위한 리샘플링 과정을 추가하고, 샘플이 적고 분류하기 어려운 통증(Painful) 클래스를 위해 특징 공간에서 표정 클래스 별로 클러스터링이 잘 되도록 링 손실 함수를 사용하였다. 7가지 얼굴 표정 관련 공인데이터인 FER2013[1]과 Pain Expressions [2]에서 추출한 통증 클래스를 추가하여 사용한 검증과 테스트에서 각각 63.3%, 60.4%에 해당하는 정확도를 보여 인식 성능이 개선된 것을 확인하였다. 이러한 연구 결과는 추후 운전자의 갑작스런 통증으로 인한 대형사고를 미연에 방지하는 시스템의 개발에 활용될 수 있다.


We need research to detect human extreme pains using vision technologies in various environments for safety. For example, a car driver may be in a state of emergencies such as sudden pain or cardiac arrest. Therefore, we propose an emergency detection system based on human facial expressions to detect human emergent states. We organize the data for painful facial expression classes separately and propose a modified LeNet to use as a baseline. We add a resampling process to solve the noise in the training data. In addition, for Painful class with few samples and difficult to classify, we apply ring loss with softmax for clustering by facial expression class in feature space. We show accuracies of 63.3% and 60.4% for validation and testset with 8 expression classes both from 7 expression classes of FER2013[1] and an added pain class extracted from Pain Expression [4]. These results can hopefully be used to develop a system that can prevent terrible car accidents due to a sudden pain of the car drivers.