초록 close

최근 지리정보시스템, 움직임 객체관리시스템, 동영상/이미지 내용기반 검색시스템, 시계열 데이터베이스시스템과 같이 다차원 데이터를 이용하는 응용에 대한 관심이 고조되고 있다. 이 논문은 다차원의 특징벡터를 벡터 근사치로 표현한 후 색인 트리를 구성하여 검색의 효율을 높이는 VA(vector approximate)-트리를 제안한다. 이 논문에서 제안하는 VA-트리는 전체적인 색인구조의 저장공간을 줄이기 위해서 VA-파일의 벡터 근사치 개념을 이용하여 데이터량이 증가해도 검색 성능이 저하되지 않도록 하는 트리 형태의 구조를 갖는다. A-트리는 MBR 기반의 색인구조이지만 MBR 간에 겹침이 발생하지 않는 분할 방법을 사용하여 검색 효율을 높인다. 제안하는 색인구조와 기존의 여러 다차원 색인구조와의 성능 평가를 통해 제안하는 방법의 우수함을 보인다.


In this paper, we propose a multi-dimensional index structure, called a VA(vector approximate) -tree that constructs a tree with vector approximates of multi-dimensional feature vectors. To save storage space for index structures, the VA-tree employs vector approximation concepts of VA-file that presents feature vectors with much smaller number of bits than original value. Since the VA-tree is a tree structure, it does not stiffer from performance degradation owing to the increase of data. Also, even though the VA-tree is MBR(Minimum Bounding Region) based tree structure like a R-tree, its split algorithm never allows overlap between MBRs. We show through various experiments that our proposed VA-tree is the efficient index structure for large amount of multi-dimensional data.