초록 close

원격탐사 응용분야 중 토지피복 분류를 통한 지구환경의 원격탐지기법은 환경 관리, 도시계획 및 지리정보시스템의 응용분야에 광범위하게 사용되고 있는 접근방식이다. 본 연구는 다목적 실용 위성(Korea Multi-Purpose Satellite : KOMPSAT)의 전자광학카메라(electro-optical camera : EOC)를 통해 취득한 영상의 토지피복 정보를 추출하는 방안을 제시하였다. 사용영상은 다중 분광 정보를 보유하고 있는 공간해상도 30m의 Landsat TM과 6.6m의 공간해상도와 단일밴드로 구성되어 있는 KOMPSAT EOC영상이며, 연구 대상지역은 청주시 미호천 수계이다. 영상합성은 IHS(intensity hue saturation), HPF(high pass filtering), CN(color normalization), 그리고 Wavelet 변환방식을 적용하여 결과를 비교하였다. 합성된 영상은 RBF-NN(radial basis function neural network)과 ANN(artificial neural network)법을 이용하여 피복분류를 실시하였으며, 이상의 과정을 통해 최적 결과를 도출하는 영상합성 및 분류기법을 제시하였다.


Classification of the land cover characteristics is a major application of remote sensing. The goal of this study is to propose an optimal classification process for electro-optical camera(EOC) of Korea Multi-Purpose Satellite(KOMPSAT). The study was carried out on Landsat TM, high spectral resolution image and KOMPSAT EOC, high spatial resolution image of Miho river basin, Korea. The study was conducted in two stages: one was image fusion of TM and EOC to gain high spectral and spatial resolution image, the other was land cover classification on fused image. Four fusion techniques were applied and compared for its topographic interpretation such as IHS, HPF, CN and wavelet transform The fused images were classified by radial basis function neural network(RBF-NN) and artificial neural network(ANN) classification model. The proposed RBF-NN was validated for the study area and the optimal model structure and parameter were respectively identified for different input band combinations. The results of the study propose an optimal classification process of KOMPSAT EOC to improve the thematic mapping and extraction of environmental information.