초록 close

스마트카드와 같이 계산 능력이나 메모리가 제한된 장치에 암호 시스템을 구현할 때, 장치 내에 내장되어 있는 부채널 공격을 고려한 암호학적인 알고리즘은 적은 메모리를 이용하여 효율적으로 수행되어야 한다. 스칼라 곱셈 연산은 타원곡선 암호시스템에서 중요하게 다뤄지는 연산이기 때문에 부채널 공격에 안전하게 구성되어야만 한다. 하지만 부채널 공격에 안전하다고 제시된 여러 대응방법조차도 때로는 고려되지 않은 분석법에 의해 그 취약점이 드러나곤 한다. SPA에 취약하지 않다고 알려진 더미 연산을 추가한 스칼라 곱셈 연산 알고리즘은 Doubling Attack에 의해 그 취약점이 드러났다. 그러나 스칼라 곱셈의 부채널 공격 대응 방법 중 하나인 Hedabou에 의해 제안된 sABS 방법은 Doubling attack이 적용되지 않는다. 본 논문에서는 기존의 Doubling attack을 활용하여 sABS 방법을 분석할 수 있는 새로운 강화된 Doubling attack을 제안하고, 실험적인 결과를 통해 자세한 공격 방법을 소개한다.


In cryptographic devices like a smart-card whose computing ability and memory are limited, cryptographic algorithms should be performed efficiently. Scalar multiplication is very important operation in Elliptic Curve Cryptosystems, and so must be constructed in safety against side channel attack(SCA). But several countermeasures proposed against SCA are exposed weaknesses by new un-dreamed analysis. `Double-and-add always scalar multiplication' algorithm adding dummy operation being known to secure against SPA is exposed weakness by Doubling Attack. But Doubling Attack cannot apply to sABS recoding proposed by Hedabou, that is another countermeasure against SPA. Our paper proposes new strengthened Doubling Attacks that can break sABS recoding SPA-countermeasure and a detailed method of our attacks through experimental result.